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ABSTRACT: In this article, we review the progress made in the area of industrial
twisted fibrous structures. First, we focus on the general geometrical description of the
structures, and then move to issues including the tensile behavior and fracture process.
The effects of fiber bending and torsion, strain rate, and viscoelasticity are also dis-
cussed. The influences of both dynamic and fatigue loadings are studied as well.
Discussion on the fiber blending and on the behavior of blended hybrid structures is
provided. Further, a special section is included in which six specific topical areas, their
significance toward textile science, and the progress made in these areas are introduced
and summarized. Finally, experimental issues are discussed. Although this article is
intended to serve as a complete review of the subject, because of the limit of both time
and space, we can only focus on the areas in which we are most familiar. This article,
therefore, is by no means exhaustive or authoritative in every topic discussed. © 2002
John Wiley & Sons, Inc. J Appl Polym Sci 83: 610–630, 2002

Key words: twisted fibrous structures; mechanics of ropes; constitutive equations;
hybrid cases; some fundamental issues

INTRODUCTION

Industrial (or technical) textiles are defined as
“textile materials and products intended for end-
uses other than clothing, household, furnishing
and floorcovering, where the fabric or fibrous com-
ponent is selected principally (but not exclusively)
for its performance and properties as opposed to its
aesthetic or decorative characteristics.”1 Industrial
textiles may thus include those applied in agricul-
tural areas such as gardening and landscaping, for-
estry, and animal husbandry; in building or con-
struction areas such as membranes, materials for

lightweight and solid constructions; in geotech ar-
eas for road and dam construction, soil sealing, and
drainage systems; in other industrial areas for fil-
tration, sealers, and insulation applications; in the
medical area for hygiene and protection purposes;
and in the mobile industry and sports areas.2 The
scope of this article will only deal with the indus-
trial twisted fibrous structures which include yarns,
cords, and ropes.

The main advantages of using twisted fibrous
structures are for their strength, weight, flexibil-
ity, and elastic behavior; with regard to the latter,
“when flax is twisted to form a cord, it exhibits
maximum axial stiffness and minimum bending
stiffness.”3

The major differences between industrial
yarns, cords, and ropes, and yarns for clothing
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purposes lies in the requirement in durability,
load-carrying capacity, and other physical, chem-
ical, or service-related properties. Another dis-
tinction is that the majority of modern industrial
yarns are often made of filament instead of staple
fibers.

The mechanics of twisted fibrous structures is
such a classic topic in textile science that there
have been several books or monographs devoted
to it.4–8 It is therefore not our purpose to provide
all the detailed treatment on related topics.
Rather, we list the major important issues and
contributors in the area, the current status of the
fields, and more importantly, stress, whenever
possible, the issues or problems that have yet to
be solved.

APPLICATIONS OF INDUSTRIAL YARNS

Industrial twisted fibrous structures are mainly
applied to load-carrying situations, and the appli-
cations can be classified into four different cate-
gories9:

● Fastening operations: subjected to steady
and/or cyclic loading; for instance, buoy
moorings

● Transporting operations: subjected to a dy-
namic loading superimposed on a static ten-
sion—most marine applications such as tow-
ing vessels

● Lifting operations: subjected to a small num-
ber of dynamic cycles imposed on a steady
loading, such as mounting climbing

● Impact operations: subjected to a falling ob-
ject; impact energy must be absorbed without
failure. Safety rope is an example.

In view of the nature of the applications, it is
understandable that the mechanical durability
and environmental attack resistance are the
prime requirements for the performance of these
materials.

MATERIALS AND STRUCTURES

Of all the twisted fibrous structures for industrial
applications, ropes are probably the most complex
in terms of structural compositions and applica-
tion scenarios. Because ropes contain all forms of

industrial twisted structures, in this article, they
will be dealt with principally.

Materials

Marine ropes are composed of millions of individ-
ual fibers twisted and combined into many levels
of substructures such as yarn, plied yarn, rope
yarn, and strand (Fig. 1). The levels of structure
are dependent on the complexity of the rope ge-
ometry. However, in principle, at least three lev-
els can be identified, i.e., fiber, yarn, and strand.

In natural fibers, manila and cotton are com-
mon materials for rope, and in synthetic materi-
als, nylon, polyester, polypropylene, and recently,
Aramid (Kevlart) fibers are all good candidates as
rope-making fibers.11 Table I provides more de-
tailed information about the specifications of
ropes made of different fiber types.

Single Yarns and Helix Model

As mentioned above, the fibers in a rope are
twisted to various degrees to maintain the struc-
tural integrity, among other things. For filament
yarns, the fiber arrangement in the structure is
closer to the so-called idealized helical structures
according to the description of Hearle et al5: “The
yarn is assumed to be circular in cross section,
and composed of a series of concentric cylinders of
differing radii. Each fiber follows a uniform heli-
cal path around the concentric cylinders, so that
its distance from the yarn axis remains constant.
A fiber at the center will follow the straight line of
the yarn axis; but, going out from the center, the
helix angle gradually increases, since the number
of turns of twist per unit length remains constant
in all the layers. The density of packing of fibers
in the yarn remains constant throughout the
model; and the structure is assumed to be made of

Figure 1 A rope structure.10
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a very large number of filaments, so that various
complicating effects, which are due to the special
ways of packing a limited number of fibers to-
gether, do not arise.”

Plied Yarns

A plied yarn is formed by twisting together two or
more single yarns, which is similar in many geo-
metric aspects to the twisting of two or more
filaments to form a single yarn. Instead of the
fiber following the helical path, it is now the sin-
gle individual yarn axis that lies along the helix.

Twisted Rope Structure

Ropes are formed by several strands each consist-
ing of several plied yarns. For a twisted rope, the
twisting direction in different structural levels
must alternate between Z and S twisting to
achieve a balanced structure.

Braided Rope Structure

Besides twisted ropes, another method of making
rope is by using plaiting or braiding. This is a
modified form of weaving yarns into a tubular
form. The structure of braided rope is more stable
than the twisted one; therefore, thicker and stron-
ger ropes can be made this way. Also, by braiding
the structure into a balanced structure, it “pos-
sesses the advantage that no torque is induced in
rope stretched by virtue of the axially symmetric
structure of the rope.”13

Fiber Migration

The requirement of filament continuity and the
practicality of equivalent filament feed rates into
the twisting zone necessitate the interchange of
filaments between coaxial helical rings, so that
there will be a periodical change of radial location
for each filament, which is termed migration.

As a result of both twisting and fiber migration,
the path of a fiber orientation in a rope becomes
rather complex; the geometry of double-braided
rope was considered representable with a sinusoi-
dal undulation superposed on a circular helix.14

TENSILE BEHAVIOR OF THE STRUCTURES

Twisted fiber structures have a unique strength-
generating mechanism; the force that is breaking
the structure is at the same time strengthening it.
So the prediction of yarn tensile behavior is a
complicated issue, and many factors and effects
have to be considered.

General Treatments and Models

There have been several general treatments on
yarn mechanics. Starting from a simple analysis
by Gegauff,15 to a more complex model by Platt,16

Hearle,17 Treloar,18 Kilby,19 and to the Wilson’s
model of a filament cord20 as well as Costello’s21

analysis on wire ropes. Recently, Pan has pub-
lished a series of articles on the general theoret-
ical treatment of twisted fibrous structures.22–27

The modeling of a rope structure is more com-
plex, and there have been some attempts only

Table I Comparison of the Performance of Some Ropes with a Strength of
500 kN12

Fiber Rope Type
Weight

(kg/100 m)
Stiffness

(kN/1% ext)
Price

(£/100 m)

Manila Three-strand 500 40 600
Steel Galvanized 300 360 700

Stainless 300 360 2500
Polyester Double braid 220 30 1500
Polypropylene 8-Strand 200 20 500
Nylon Double braid 150 15 1200
Polyester Parallel braid 150 40 1000
Carbon Pultrusion 70 600 10,000
Aramid Parallel yarn 40 80 1600
HMPE Stranded 40 80 1600
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recently.28,29,13,14 Limited by the complexity of
rope structures and their discrete components,
the classical continuum mechanics approach is
not readily applicable, and the structural model-
ing method is adopted instead.

When modeling a rope structure, two con-
straints have to be satisfied: 1. the compatibility
condition, where the total rope stretch equals the
summation of stretch in different elements over a
helix period; and 2. the equilibrium condition,
where the resultant axial force acting on any rope
cross-section is constant along the rope axis.

For a given rope structure in which the
strand’s geometrical configurations are initially
prescripted, the general approach of modeling fol-
lows the steps below13:

1. The strand tensile properties and geomet-
rical parameters are input factors

2. For each given axial rope load, a new rope
geometry is determined

3. Computing the local length change at dif-
ferent locations along a strand yields a
strain distribution in the rope strand

4. Strand load is then determined through its
load-strain relationship

5. By converting the individual strand load
into rope axial load and summing up the
contributions from different strands, a rope
load-strain curve is generated.

Fiber Tension and Lateral Compression in a Yarn

To understand and predict the strength of fila-
ment yarns accurately, the effect of transverse
pressure on the individual fibers caused by ten-
sioning of the yarn is considered.

Although there have been several versions of
the expressions for yarn tension and lateral com-
pression, Pan’s23 results probably are the most
concise. If we ignore the effect of fiber migration,
then the fiber tension in a staple yarn can be
written as

s 5 Ef e fF1 2
cosh~nx/rf!

cosh~ns! G (1)

where Ef, ef, and rf are the fiber modulus, strain,
and radius; x is the distance from either fiber end
to the center; s 5 lf/ 2rf is called the fiber aspect
ratio where lf represents the fiber length; and

n 5 ÎGTL

Ef

2
ln 2 (2)

is an indicator of the gripping effect of the yarn
structure on each individual fiber. It was there-
fore named the yarn cohesion factor and is re-
lated, as shown in the equation, to the ratio of
yarn longitudinal shear modulus GTL and the
fiber tensile modulus Ef, as well as the fiber ar-
rangement within the yarn reflected by the anal-
ysis in Pan.23

The lateral compression on the fiber is

g 5
n

2m
Ef e ftanh~ns! (3)

where m is the interfiber frictional coefficient.
For a continuous filament yarn or a staple yarn

in which twist level is high enough so that ns @ 1,
there are cosh(ns) 3 ` and tanh(ns) 3 1. We
then have

s 5 Ef e f (4)

and

g 5
n

2m
Ef e f (5)

The importance of lateral pressure on load
transfer from fiber to fiber in a twisted fibrous
structure was recognized as far back as Galileo,30

and several researchers in yarn mechanics have
incorporated the effect of the transverse force into
their analytic models. For example, Gurney31 de-
veloped a relationship between yarn strength,
twist level, lateral contraction ratio, and fiber
stress–strain properties. Sullivan32 determined
the strength of staple fiber yarns by analyzing the
lateral pressure distribution across the yarn and
its contribution to axial stress. Machida33 ana-
lyzed the lateral pressure in blended filament
yarns under tension as a means of predicting the
recovery fiber length during yarn rupture. Gros-
berg34 calculated the lateral pressure distribution
in a low-twist sliver under extension so as to
predict the sliver strength. Dogu35 derived the
distribution of transverse pressure in a twisted
yarn including fiber migration and fiber packing
density variation. Hearle,5 as well as Kilby19 and
White et al.36 provided the comprehensive analy-
sis of filament yarn strength taking into account
transverse forces, leading to a more complete un-
derstanding of the relationship between proper-
ties of filament and yarn.
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Fiber Bending and Torque in a Yarn

For textile structures, bending is involved not
only in their forming processes, but actual use
conditions may include various modes of bending
motion. For instance, when a rope is stretched,
the yarn deformation not only includes tensile,
but also bending and torsional deformations be-
cause of the helical orientation of the fibers. Thus,
bending effects have been an active research area
for many years and good progress has been
achieved in several studies; for instance, early
work by Backer37 in yarn bending geometry,
Platt16 in calculating yarn bending rigidity, and
Zorowski and Chen38 in frictional constraints.
Kim and coworkers39 investigated the bending
properties of monofilaments at large bending de-
formation (beyond yielding) and considered the
filaments to be elastic–plastic. Wu et al.13 studied
the rope behavior as a bending field superimposed
on a tension strain field. Marine ropes are usually
subjected to bending by virtue of geometric con-
straints such as eye splice terminations or looping
on a pin, or running through pulleys and blocks.

Twisting a yarn is very different from twisting
a solid shaft. “The linear elastic analysis of twist-
ing a rod to a small strain reveals that the pri-
mary mode of deformation of the rod material is
that of pure shear. However, when a yarn is
twisted, there is no significant resistance to the
fibers that lie parallel in the yarn simply sliding
past each other in the direction of the fibers. In
other words, there is virtually no resistance to
immediate and catastrophic shear failure. Resis-
tance to twisting is very low in any case and it
only builds up significantly at large strains.”8

Fiber Compression Behavior in a Yarn

Industrial cord is designed as a structural ele-
ment dealing with relatively large axial loads in
tensile in comparison to bending and torsional
loads. However, sometimes a lateral compressive
load may be added upon the cord. When a cord is
subjected to such compression, the individual fil-
aments lose contact with each other. This results
in a considerable reduction in the axial stiffness
of the cord.40

Yarn Constitutive Equations and Elastic Constants

One of the fundamental tasks in studying the
mechanical behavior of a medium is to derive its
stress–strain or constitutive relationships. In the

case of the ideal yarn model defined above, the
fibers can be assumed to be arranged in the trans-
verse plane in such a manner that there is no
preferential packing geometry in the plane, thus
making the plane mechanically isotropic and al-
lowing the yarn structure to be treated as a trans-
versely isotropic material. Consequently, its
stress–strain relationships can be expressed by
the following equation8:

3
e11

e22

e33

g12

g23

g31

4 5 3
1

ET
2

nTT

ET
2

nLT

EL
0 0 0

2
nTT
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2
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ET
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nTL
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0 0

0 0 0 0
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0
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1

GTL

43s11

s22

s33

t12

t23

t31

4
(6)

where 1, 2, and 3 refer to the X1, X2, X3 directions
in the Cartesian coordinate system and EL is the
longitudinal modulus governing uniaxial loading
in the longitudinal (X3) direction, nLT is the as-
sociated Poisson’s ratio governing induced trans-
verse strains, ET is the transverse modulus gov-
erning uniaxial loading in the transverse (X1 or
X2) direction, nTL is the associated Poisson’s ratio
governing induced longitudinal strains and nTT is
the associated Poisson’s ratio governing resultant
strains in the remaining orthogonal transverse
(X1 or X2) direction, GTL is the longitudinal shear
modulus governing shear in the longitudinal di-
rection, and GTT is the transverse shear modulus
governing shear in the transverse plane.

A comprehensive description of the mechanical
behavior of a staple yarn relies on the determina-
tion of these material constants.

There have been several attempts in deriving
the constants, and the following is the result from
Pan.23 For an ideal yarn model of continuous fil-
aments, we have the modulus in longitudinal di-
rection

EL 5
3Vf E f

4 Q1~q! 5
3Vf E f

4
~1 1 cos q!2

1 1 cos q 1 cos2q (7)

where Ef and Vf are the fiber tensile modulus and
fiber volume fraction in the yarn and q is the helix
angle at yarn surface. The transverse modulus is
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ET 5
8Vf Ef

p2 Q2~q!

5
8Vf Ef

p2

~q/2 2 1/4 sin 2q!2

~2/3 2 cos q 1 1/3 cos3q!~1 2 cos q!
(8)

and the Poisson’s ratios

nLT 5
sin5q

2~1 2 cos3q!~q/2 2 1/4 sin 2q!
(9)

nTL 5
16 sin q~q/2 2 1/4 sin 2q!

3p2~2/3 2 cos q 1 1/3 cos3q!
(10)

nTT 5
2
p

(11)

as well as the shear modulus

GTT 5
4Vf Ef

p~2 1 p!
Q3~q!

5
4Vf Ef

p~2 1 p!

~q/2 2 1/4 sin 2q!2

~2/3 2 cos q 1 1/3 cos3q!~1 2 cos q!

(12)

The shear modulus GTL is

GTL 5 EfVf Q4~q!

5 EfVf

1
p~1 2 cos q!sin3q

6~q/2 2 1/4 sin 2q!2

1
8 sin3q

3p~1 2 cos q!~1 1 cos q!2

1
p~4 2 3 cos q 2 cos3q!

6~q/2 2 1/4 sin 2q!~1 1 cos q!

(13)

That is, all the material moduli are the func-
tions of fiber modulus, fiber volume fraction, and
yarn twist as reflected by the surface helix angle
q, and the system Poisson’s ratios are only deter-
mined by the surface helix angle q. For staple
fiber with limited length and hence fiber slippage,
the results have to be modified.23,24 Also, the re-
sults above only consider the effect of fiber exten-
sion, and bending effect is incorporated into the
results in Pan.25 A more complete treatment of
the problem by Thwaites can be found in Ref. 6
where torsion effects are also included.

BLENDED STRUCTURES

Fiber blending has been a long-time common
practice in textile processing. By mixing fibers of
different types to form textile yarns, many advan-
tages are achieved such as property compensation
or reinforcement between fibers, cost reduction
without significant sacrifice of yarn performance
by partially replacing expensive fibers with less
expensive ones, and cross-dyeing effect caused by
the different dye affinity of multiple fiber types.
Owing to the importance of blended yarn struc-
tures, it is desirable to understand and specify
their mechanical behavior to realize the potential
of the blending process.

The investigation of the mechanics of blended
yarns has been the topic of many studies,26,41–47

and most of these studies have focused on the
prediction of the tensile strength of the yarn as
the most important yarn property with practical
significance. Considering the complexity of the
mechanics of staple yarns with even a single fiber
type, the existence of multiple fiber types in a
twisted structure adds a formidable dimension to
the theoretical analysis.

Intimate Blending and Structural Blending

There are several ways to blend fibers into ropes,
i.e., intimate and structural blendings. Intimate
blending is the case in which different fiber types
are mixed uniformly in the system, whereas the
different fiber types concentrate at different loca-
tions in the system in the case of structural blend-
ing. “It is common, for example, for a jacket to be
made of polyester around a high-modulus fiber
core. There can also be intimate blends. In ropes
that are subject to high loading, a polyester/
polypropylene blend can minimize the effects of
heating. At a temperature when the polypro-
pylene melts, absorbs heat and prevent further
temperature rise, the polyester remains effec-
tive.”12

Problems Associated with Fiber Blending

There are several aspects that make hybrid struc-
tures much more difficult to analyze. In hybrid
yarns, in which two different types of fibers are
blended together to form a system, the differences
in their contributions toward the overall behavior
of the structure, because of the diverse mechani-
cal properties of the constituent fibers, have to be
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considered. Secondly, the interaction between the
two constituents will alter the nature of yarn
behavior, especially during fracture. Inclusion of
this interaction into analysis has proven to be
very challenging.

The Hybrid Effects

One phenomenon associated with the interaction
in a blended structure that greatly complicates
analysis is the so-called “hybrid effect,” which is
defined in Marom et al.48 as the deviation of be-
havior of a hybrid structure from the Rule of
Mixtures. A positive hybrid effect means that the
property is above the prediction given by the Rule
of Mixtures, whereas a negative hybrid effect
means the property is below the prediction. There
is a second definition for the hybrid effect as the
difference between the performance of a fiber in a
hybrid structure and in a nonhybrid struc-
ture.49,50 Again the hybrid effect can be positive
or negative depending on whether the property in
the hybrid system is greater or smaller than that
in the nonhybrid system.

In previous articles by Pan and Postle,51,52

three physical mechanisms have been identified
and demonstrated to be responsible for causing
the hybrid effects in a hybrid structure. The first
(Mechanism I) is the protection or enhancement
afforded by the system to the fibers through the
so-called fragmentation process during structure
extension. This enhancement effect is largely de-
pendent on the along-fiber property variation
(variation along a fiber length) and on the fiber–
fiber gripping. Because of this enhancement, the
(in situ) behavior of the fibers in a structure will
be different from the original (ex situ) fiber behav-
ior determined before the fibers are embedded
into the system. The second mechanism (Mecha-
nism II) is related to the between-fiber property
variation, i.e., variation of breaking properties
between fibers of the same type. Because of this
variation, fibers of the same type in the structure
will break gradually according to the statistical
distribution of their breaking strain, eventually
reducing the values of strength and breaking
elongation of the structure because of the fiber–
fiber interaction of the same type. Because the
along-fiber property variation and the between-
fiber property variation exist in both hybrid and
nonhybrid systems, Mechanisms I and II are ef-
fective in a yarn of single-fiber type as well.

The third (Mechanism III) is the cross coupling
effects between the different fiber types in the

structure; this mechanism was found52 in general
to enhance the fiber in situ properties of the
lower-breaking-strain fiber type but depresses
those of the higher-breaking-strain fiber type,
leading to a positive hybrid effect associated with
the first peak and a negative hybrid effect associ-
ated with the second peak on the stress–strain
curve of a blended structure, when compared with
nonblended structures.

YARN FRACTURE AND TENSILE STRENGTH

Strengths of yarns are undoubtedly the most im-
portant yarn properties, because yarns have to be
durable enough to sustain the various actions
during the subsequent process of applications.
For this reason, research work to understand the
strength-generating mechanism, and to predict
yarn strength has been one of the most productive
areas in textile literature.5,16,27,32

It is well known that, because of the variations
in fiber strength, the breaking stress of a parallel
fiber bundle deviates from that of its constituent
fibers. However, prediction of strength of a
twisted fiber structure is also different from that
of a parallel fiber bundle because, in the latter
case, the effect of fiber interaction is negligible,
and also as fibers are all parallel to the axis of the
assembly (the loading direction) in the parallel
bundle, the fiber obliquity effect is nonexistent.
Moreover, strength prediction of a fibrous struc-
ture is unlike its modulus; the strength of a ma-
terial is not a volume-average quantity but rather
an extremum quantity, dictated by the weakest
cross-section of the structure. This so-called
weakest link theorem was first elucidated by
Peirce53 in 1926 and has since been thoroughly
discussed by numerous authors.

Daniels54 demonstrated that, if the fiber-
strength distribution is of Weibull55 form, the
asymptotic strength distribution of a parallel fiber
bundle when the bundle size N is large enough is
of normal type. This conclusion has been accepted
by the latter studies. Harlow and Phoenix56 pro-
posed the concept of the chain-of-bundles model of
the strength of fibrous structure to tackle the
issue of statistical nature of strength of individual
filament, the size (length) effect on filament
strength as well as the load-sharing mechanism
during structure breakage. Phoenix57 also ex-
tended their method to the analysis of twisted
fiber bundles by incorporating the fiber helical
paths into his model. However, exclusion of the
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effects of fiber interaction such as interfiber fric-
tion and lateral constraint in his model brings
serious limits to his theory in terms of the appli-
cability and the accuracy of prediction.

Interfiber Friction and Interactions

Friction is the chief mechanism by which any
textile structure is able to assemble; it is there-
fore fundamental in our study of yarn behavior to
look into the detailed frictional behavior between
fibers in a textile structure. There have been
many studies on friction in textiles.58–60

To better understand and more accurately pre-
dict the strength of twisted fiber structures, be-
sides the properties of the constituent fibers, the
interactions between fibers as well as between the
fiber and yarn structure have to be considered,
because these interactions will significantly alter
the in situ fiber properties. Research on the pre-
diction of yarn strength hence involves the inves-
tigation of the flaw distribution along the fiber
length and its effect on yarn strength, the fiber in
situ mechanical properties, and the stress trans-
fer from the broken fiber into still-surviving fibers
during yarn extension. Some of these issues are
also of interest for researchers in fiber composite
materials, and some are fundamental to materi-
als science in general.

Fragmentation and the Critical Length

Besides the weakest link mechanism, there is
another mechanism known as the fragmentation
process which relates to, but acts differently from,
the weakest link mechanism. It was observed
during the fracture process of both composites61

and yarns45 that the constituent fibers break re-
peatedly along the length with increasing strain
of the structure before overall material failure.
This phenomenon indicates a fact that, contrary
to common assumption, a broken fiber can again
build up tension, carry load, break into even
shorter segments, and contribute toward overall
system strength. Also, the fiber breaks will not
stop, as long as the whole structure does not col-
lapse, until the length of the breaking segments
reaches a minimum value at which its load can no
longer build up to its segment breaking strength.
This length is well known as the critical length lc.
If sb is the tension that causes the fiber segment
to break, it follows that the minimum length on
which a broken segment can no longer build up its
tension again from the broken position or the

minimum length into which a fiber can be broken
is33:

lc 5
sb

prmg (14)

where m is the frictional coefficient, r is the fiber
radius, and g is the local lateral pressure.

However, because of the length-strength de-
pendency implied by the weakest link theory, the
strengths of these fiber segments will become
higher with decreasing length. It was reported by
Pan et al.22 that even excluding the fiber obliquity
effect, which will lower the contribution of indi-
vidual fibers toward the yarn strength, the exper-
imentally determined yarn breaking load is still
greater than the prediction based on the prede-
termined breaking force of all its fibers. A new
mechanism was proposed to account for this dis-
crepancy. Given the fact that the shorter fiber will
show a higher breaking strength, it was sug-
gested that, because of the fragmentation process,
the twist-induced lateral pressure substantially
raises the overall strength of a filament yarn by
increasing the apparent strengths of the seg-
ments of each individual fibers. This also suggests
the assistance of a structure to its constituent
components during loading.

Yet, there is a difference in the fragmentation
process between fiber composites and yarns. For a
fiber composite, because the bond adherence be-
tween fibers and the matrix remains largely un-
changed as tension on the composite is increased,
the critical fiber length that determines the final
length of the fiber fragments can be treated as
constant. However, in the case of twisted yarns,
because the lateral pressure in the yarn that pro-
vides lateral constraint on fibers is dependent on
the external tensile loading, the length of the fiber
fragments hence changes (decreases) along with
the increasing lateral pressure during yarn exten-
sion up to the ultimate yarn failure. This mecha-
nism will vary for different yarn structures and
will also be strongly influenced by the geometric,
mechanical, and surface properties of fibers (in-
cluding their variations).22 All of this consider-
ably complicates the analysis of yarn strength.

It should be pointed out that the significance of
the fiber fragmentation effect is dependent on the
differences between the breaking strains of the
structural components. Although this effect is
more noticeable in fibrous structures in which the
breaking strains of the structure components (fi-
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ber and matrix material in composites or distinct
fiber types in blended yarns) are remarkably dif-
ferent, it should also play a role in other fibrous
structures as long as there is a dispersion in fiber
breaking strain or strength.

Load Sharing Between Fibers

Another important aspect of interfiber interac-
tions is the so-called load sharing process. During
yarn failure, the fibers in the yarn will not break
simultaneously. Instead, there exists a span over
yarn strain during which fibers fail individually
because of the variations caused by many factors.
The ones still surviving have to share the load
previously carried by the just-broken ones. This
load-sharing mechanism varies based on yarn
structures, fiber types, and twist levels. Harlow
and Phoenix56,57 have dealt with the this problem
extensively, for both yarns and fiber-reinforced
composites. It is understandable that the load-
sharing process in a composite is more local be-
cause of the relatively strong fiber–matrix chem-
ical bonding.

In Situ and Ex Situ Fiber Properties

Because of the effects of interfiber interactions, it
is often meaningless to deal with the mechanical
properties of the constituent fibers isolated from a
specific structure because these (ex situ) proper-
ties will alter once the fibers are assembled into
the structure. This change of properties (the in
situ properties) may be caused by two factors;
first, the fibers incorporated into a structure are
under a complex loading situation because of in-
teractions; second, the fragmentation process re-
duces the fiber length, and consequently in-
creases the fiber strength. It may be desirable to
designate new conditions (close to the real situa-
tion of the structure) under which the properties
of the fibers will be determined.

STRAIN RATE, VISCOELASTICITY,
DYNAMIC, AND FATIGUE EFFECTS

Viscoelastic and Strain-Rate Effect

There are a limited number of studies in this area
in textile literature. Huang studied the viscoelas-
tic tensile behavior of a two-ply filament yarn62

and multi-ply yarn.63 Asvadi and Postle64 have
used linear viscoelastic theory dealing with the

large strain shear problem. There have been more
extensive investigations on time-dependent, or
viscoelastic behavior of cord or rope structures in
the mechanical engineering field by Conway and
Costello.65–67 They proposed a new method in
which the axial viscoelastic response of simple
strand may be predicted given the stress relax-
ation of the filament’s construction material with-
out considering the effects of friction and material
compliance.

Dynamic Loading

El-shiekh68 published a work dealing with the
dynamic modulus of viscose–polyester blends. Re-
cently, Vangheluwe and Goswami69 published a
note on the strain rate in dynamic tensile testing.
Wu et al.13 observed that, at dynamic tensile load-
ing situation, a rope structure becomes more com-
pact, and “its stiffness increases while it retains
the same failure strength, but it experiences a
much lower strain to failure. The magnitude of
change in dynamic behavior rises sharply in the
beginning of load cycling, but soon reaches a sta-
ble value.”

Fatigue and Environmental Attack

Anandjiwala et al.70,71 have done considerable
work dealing with the fatigue behavior of staple
fiber yarns. From the pathological studies of used
and tensile-cycled rope, it was concluded by Seo et
al.14,72 that tensile creep and wear (internal and
external) processes are two major rope deteriora-
tion processes under environmental attack. From
friction and wear tests of monofilaments and rope
yarns, it was determined that the wear life of
yarn is dominated by the total number of friction
cycles.

SOME SPECIFIC PROBLEMS AND ISSUES

Six specific topical areas are identified in this part
for further discussion, namely, the nature of the
fibrous structures; the fiber packing problem; the
stress transfer problem; the fiber structure frac-
ture and failure problem, and the hybrid struc-
ture problem; and the size or scale problem. These
problems are applicable, but not limited, to
twisted fibrous structures. It is our opinion that
the progress in all of these areas has reached a
point that they should each be treated as an in-
dividual topic for more in-depth research. They
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represent, in fact, some of the fundamental issues
in mechanics of fibrous structures.

Nature of the Fibrous Structures

A fibrous structure is chiefly a mixture of fiber
and air so that the overall system behavior is
determined by the properties of each constituent
and any possible coupling effects between them.

Fibrous Structures as Discrete Media

Fibrous structures are not classical continuum,
but rather are discrete because of the existence of
the macro-pores. Micromechanics is often used to
study the mechanical behavior of discrete media
from microstructural considerations and is based
on the properties of its constituents. However, the
inherent random nature of the physical and geo-
metrical features of discrete media is fundamen-
tally different from the macroscopic level of the
assumed continuum, when the method of com-
bined microanalysis and continuum theory is
used. Therefore, the connections between the for-
mulations from the microstructural analysis and
the macroscopic performance have to be estab-
lished as the premises for the discrete media
study. Axelrad73,74 has proposed that, in the for-
mulation of the mechanics of a discrete medium,
three measuring scales should be used to define
such a system. The smallest scale is called a “mi-
croelement” of the structure. It is a typical repre-
sentative element of the microstructure of the
system on which all of the continuum concepts are
applicable, as it is a continuum by definition.
Then, an intermediate scale named “mesodo-
main” containing a statistical ensemble of the
microelements follows. The physical and geomet-
rical parameters of the mesodomain are indepen-
dent of the positions, and have to be derived sta-
tistically based on the parameters of its constitu-
ent microelements. In fact, the mesodomain is
defined as a portion of, or as the representative of,
the whole system on which the continuum ap-
proach is once again valid, provided that only the
effects over distances appreciably greater than
the distance between the microelements are con-
cerned.8 Finally, a finite number of nonintersect-
ing mesodomains form the macroscopic material
body. These three divisions clearly illustrate the
relationships between the different structural
(from microscopic to macroscopic) levels, and
thus, actually provide the natural sequence of the
micromechanical analysis.

The concepts of these three divisions have been
applied, consciously or subconsciously, by previ-
ous researchers in dealing with fibrous sys-
tems.75–78

The Genuine Stress and Strain for Fibrous
Structures

Furthermore, because of the porous nature of the
fibrous materials, the conventional mechanical
definitions such as stress and strain may not be
entirely appropriate to be applied to the materi-
als. For instance, when a pressure is exerted onto
a textile surface, the effective surface area that
provides resistance to the load is not the total
area on which the pressure is on, because the area
consists of fiber and voids, and the latter should
be eliminated in normal situations. Also, when
this material is deformed, the total deformation
again includes those of both fiber and voids. In
other words, the genuine stress and strain for
fibrous structures are the ones that preclude the
effect of the voids, or at least deal with the voids
and fiber separately and differently. This is not a
simple matter of changing the definitions, and it
might have profound implications on our under-
standing of the behavior of fibrous systems.

Fiber Packing

Fibers are not isotropic materials, having distinct
properties between the axial and transverse di-
rections. They are best performed when dealing
with axial tension, but behave not as well in all
other loading situations such as compression and
shearing. Also, various loads have to be trans-
fered through the fiber–fiber contact points.
Therefore, the format in which the fibers are ar-
ranged in a structure becomes a critical issue; it
will determine virtually all the properties of the
system.

Fiber Packing Problem

The problem of fiber packing was initially studied
by van Wyk79 in his analysis of the compressibil-
ity of wool by looking into the geometrical char-
acteristics of a fiber mass formed by fiber packing.
Komori and Makishima have examined the de-
tails of such geometrical features in a fiber assem-
bly, including the mean fiber contact density and
the mean fiber length between two fiber con-
tacts,80 and the fiber and pore distribution in the
fiber assembly.81,82 Lee et al.83 have published an
article to review the research progresses in this
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field. More recently, Pan84 has considered the
steric hindrance effect, i.e., the interference of
existing fiber contacts on the successive new con-
tact to be made. Komori and Itoh85 subsequently
published a study to treat the same problem but
to allow the system volume to change so that
there become two competing factors affecting fi-
ber contact. On the one hand, an existing fiber
contact reduces the effective contact length of a
fiber and hence diminishes the chance for new
contacts. On the other hand, the existing fiber
contact point will also abate the free volume of the
fiber mass, and consequently increase the chance
for successive fibers to make new contacts. Some
of the research results in this area have been
applied to study the compressional75,83 and
shear86 behavior of general fiber assemblies, as
well as the prediction of nonwoven products,77

leading to considerable progress in those areas.
Nevertheless, research on this problem is still

very elementary. To understand the behavior of
fibrous structures, one must examine the micro-
structure or the discrete nature of the structure.
However, a thorough study of a structure formed
by individual fibers is an extremely challenging
problem. It is worth mentioning that the problem
of the microgeometry in a fiber assembly can be
categorized into a branch of complex problems in
mathematics called packing problems. Consider,
for example, the sphere-packing problem, also
known as the Kepler problem, which has been an
active area of research for mathematicians since
it was first posed some 300 years ago, and re-
mains unsolved.87 Yet, it seems that the sphere
packing would be the simplest packing case, for
one only needs to consider one characteristic size,
i.e., the diameter of perfect spheres, and ignore
the deformation caused by packing. Therefore, it
does not seem that the fiber-packing problem can
be solved completely anytime soon.

Fiber Orientation Effects

Because fibers are not isotropic, the fiber orienta-
tion thus has a determining effect on the system
properties. In most twisted fibrous materials, fi-
bers are oriented in a certain range of directions,
and the system therefore has different properties
at different directions.

It is considered common sense for textile scien-
tists that when some fibers of modulus Ef are
oriented in a direction different from the yarn
axis by an angle u, if ignoring the Poisson’s effect,
then the contribution of these fibers toward yarn
modulus Ey is the well-known law

Ey 5 Ef cos2u (15)

This can be more rigorously proven by using ten-
sor transformation. However, it should be noted
that not all fibers in a yarn are oriented in the
same direction, but rather are distributed over a
range, and the final result should be from an
integration over the whole range of the fiber ori-
entation, and dependent on the fiber orientation
function as shown previously.88 The simple cos2u
is only an approximation at best.

Stress Transfer Problem

For a continuous filament yarn, external tension
can be applied directly to each of the filaments.
But this is not the case in a staple yarn; the
tensile load can only be exerted at both ends of the
yarn and the stress has to then be transmitted to
each of the individual fibers through a so-called
“shear lag” mechanism, proposed by Cox,89 via
interfiber friction generated through twist as
shown in equations derived by Pan.23 This stress
transfer also occurs in filament yarn during the
so-called fragmentation process. Because of this
stress transfer process, several issues have to be
considered to determine the yarn properties.

The staple fibers are assembled into a contin-
uous strand by virtue of twist alone. The tension
in the fiber is built up from zero at the fiber ends
to the maximum somewhere along the fiber
length, ideally at the center. The tension distri-
bution along the fiber length is linear at the por-
tion of fiber length where slippage takes place.
But at the portion of fiber tightly gripped through
interfiber friction, a hyperbolic tension distribu-
tion has been proposed by Pan, as in eq. 1. Other
issues, including the distribution of the friction-
generated shear stress within a yarn, the fiber
length effects on yarn properties, and the critical
twist level above which a self-locking mechanism
is formed so that a staple yarn gains certain
strength, were all analyzed previously.23,24

However, several complex problems have yet to
be solved. First, in all of the existing analyses, a
continuous fiber-to-fiber contact in a yarn is as-
sumed. Yet, in a more realistic case, fibers are in
discrete point contact. This will completely alter
the distributions of both the tension and shear
stress in individual fibers. Also, several compet-
ing factors are involved in the prediction of the
optimal twist level at which a staple yarn ac-
quires the maximum strength, including the twist
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level, the fiber volume fraction of the yarn, the
statistical variations, and the fragmentation pro-
cess of yarn fracture behavior as discussed in next
section.

Fracture and Failure Problem in a Fibrous
Structure

Because of the discrete nature and the unique
means by which individual fibers are assembled
into a fibrous structure, their fracture process and
failure criterion are distinctly different from
those established for conventional engineering
materials treated mechanistically as continuum.

The Coulomb Yield Criterion and the Fiber Pullout
Force

In research of granular materials such as soil,
rocks, or any other porous media made of parti-
cles assembled together through mainly cohesion
and internal friction, there has been a well-known
Coulomb yield criterion90 in predicting the shear
failure of the system, i.e., the shear strength of
the system tu is determined by the frictional ms
and the cohesional resistances c, respectively, i.e.,

tu 5 ms 1 c (16)

where s is the normal force acting on the system.
However, Grosberg and Smith34,91 have shown

that if one pulls a fiber from a twistless sliver, the
withdrawal force WF per unit length of fiber re-
quired is given by

WF 5 m9P 1 WFo (17)

where P is the external pressure applied to the
fiber mass; m9 is the equivalent frictional coeffi-
cient but with dimensions of length, and WFo is
the value for WF when P 5 0, that is, the cohe-
sion force. This conclusion has been utilized by
Carnaby and Pan75,86 to predict the compres-
sional hysteresis and the shear modulus of fiber
assemblies.

Considering that eqs. 16 and 17 were indepen-
dently derived, the similarity between them is
both striking and inspiring: it highlights the dis-
crete nature of fibrous structures. Therefore, tex-
tile structures cannot be treated strictly as con-
tinuum if one wants to study the local response of
the structures under external loading.

Besides the fiber pullout test on a twistless
sliver done by Grosberg and Smith,34,91 fiber pull-

out from a bonded structure (nonwoven) and yarn
pullout from a woven fabric have been studied by
Pan,92 and Pan and Yoon93 theoretically and, for
the latter case, also experimentally. For both
structures, the fiber–fiber or yarn–yarn interac-
tions are proven to consist of two forms; one is of
an adhesive (for nonwoven fabric) or cohesive (for
woven fabric) nature and is independent of the
pressure at the crossing point, and the other is
frictional and is directly related to the normal
pressure that can be generated from tensions ap-
plied to the system. Yet, the cohesive force for
woven fabric has proved to be generally negligi-
ble.

The Failure Criterion for Textiles

Because normally fibrous structures can only sus-
tain tensile load, the failure criterion for linear
fibrous material like yarns is very simple. One
can use either the tensile breaking strain or the
tensile strength. However, for planer fibrous ma-
terials such as paper and nonwoven and woven
fabrics, the failure determination is not as
straightforward, simply because the tensile
strength of these materials is dependent on the
loading format.

Prediction of fabric strength under complex
loading has its significance both theoretically and
practically. Fabrics are not only highly anisotro-
pic, but also dimensionally unstable, very suscep-
tible to external loading and to its historical sit-
uation. The important fabric properties critical to
structural applications include the tensile
strengths, the in-plane shear strengths, and the
normal compressive (in thickness direction)
strength, as well as the in-plane compressive
strength, better known as the buckling strength.

The Tsai-Wu failure criterion94 is utilized by
Pan and Yoon95 to woven fabrics, assuming it is
valid for woven fabrics at least at the first quad-
rant where failure stresses are all tensile. The
unknown coefficients in the failure criterion are
determined based on the experimental results.
The fabric shear strength, which is an important
property of fabrics in load-carrying applications
but is not very convenient to obtain experimen-
tally, is predicted based on the measured uniaxial
tensile strengths of the fabric at the principal and
the off-axial directions. The influences of the var-
ious directions of the off-axial tensile test on the
predictions of the fabric shear strength are also
studied.
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Hybrid Structure Problem

As mentioned above, in blended fibrous struc-
tures, the effects caused by the discrepancies in
the properties of different fiber types as well as
the mutual interactions between the fiber types
have profound influence on the overall mechani-
cal behavior of the system. Two cases can be iden-
tified, i.e., with or without the effects of statistical
variations in fiber properties.

The Mechanics of Blended Yarns Without the
Statistical Variations

Pan26 has performed a thorough study on the
prediction of the elastic material constants such
as the longitudinal and transverse tensile moduli,
the shear moduli, and the Poisson’s ratios of

blended short-fiber yarns, based on the theory
developed previously23 for yarns of single-fiber
type by considering the structures as transversely
isotropic, and combined with the techniques used
in dealing with hybrid composite materials. The
mean tensile strengths of the blended staple
yarns are also predicted, with the exclusion of the
statistical and the hybrid effects to begin with.
The so-called minimum blend ratio, below which
the mean yarn strength will definitely not follow
the rule-of-mixtures, and the critical blend ratio,
below which the mean yarn strength will be
weakened rather than strengthened because of
the addition of the reinforcing fibers, are calcu-
lated and the variables involved are discussed.
Finally, the effects of the breaking strains be-

Figure 2 Experiments of a model with 2 cotton and 89 dacron components at TM
5 2.1999: (a) multiple breaks at 11% extension; (b) multiple breaks at 15% extension;
(c) multiple breaks at 25% extension; and (d) yarn cross-section and its load-extension
curve.
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tween the blended fiber types on the yarn proper-
ties are investigated.

The Mechanics of Blended Yarns with the
Statistical Variations

In view of the stochastic nature of material
strength, statistical approaches have been ap-
plied as well. Phoenix57,96–98 proposed the con-
cept of the chain-of-bundles model of the strength
of yarns to tackle the issue of statistical nature of
strengths of individual filaments and yarns, the
size (length) effect on filament strength, as well as
the load-sharing mechanism during yarn break-
age.

Meanwhile, extensive experimental and theo-
retical work has been done by Monego et
al.45,99,100 using mechanical tracer elements as a
means of studying rupture mechanisms in contin-
uous twisted structures of blended fiber types.

Also recently, Pan and Postle51 have completed
an analysis on strength prediction of blended
yarn structure by including the fiber property
variations and the interfiber interactions. Hybrid
structures have been applied in many areas such
as textiles and composites. However, the mecha-
nisms giving rise to the advantages associated
with fiber blending, presumably because of the
interactions between constituents of different
types, are still poorly understood. This work is an
attempt to look into the internal interactions
through theoretical analysis. A twisted structure
(yarn) of two distinct fiber types with statistically
distributed strengths is studied. It has been es-
tablished in yarns of single-fiber type27 that the
interaction via friction between fibers will lead to
a substantial increase of fiber effectiveness, and
consequently the yarn strength. Incorporating
this concept into the hybrid case makes it possible

Figure 2 (Continued from the previous page)
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to more accurately predict the strength and its
distribution for the blended yarn.

Size or Scale Problems

The gauge length at which a material is tested for
its mechanical behavior has long been recognized
as an important factor influencing such proper-
ties as strength and extensibility. Recent re-
search101,102 has revealed more information about
the importance of specimen length. Contrary to a
common assumption that the initial modulus of a
fiber is independent of its length, it was found
that the initial modulus decreases as the gauge
length is reduced, because the test length affects
the strength and breaking strain of the product by
different amounts. Also, it was observed that the

impact of gauge length on mechanical properties
differs between single fibers and fibrous struc-
tures such as yarn or fabric. In a fibrous struc-
ture, fragmentation occurs during tensioning of
the structure and greatly diminishes the gauge
length effect, leading to a much weaker connec-
tion between the mechanical properties and the
specimen length.

Further, in all previous analyses, the critical
length in the fragmentation process used for cal-
culating system strength is the value derived un-
der a normally implicit assumption that the frag-
mentation process has reached the saturated
stage. As a result, for a given twisted structure,
this critical length will be constant, and the
strength of the system thus becomes length-inde-
pendent. It was found that, in the real cases,

Figure 3 Experiments of a model with 40 cotton and 51 dacron components at TM
5 3.2699: (a) multiple breaks at 11% extension; (b) multiple breaks at 12% extension;
(c) multiple breaks at 13% extension; and (d) yarn cross-section and its load-extension
curve.
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there are many variables that affect the fragmen-
tation process adversely so that a saturated frag-
mentation state is often not realized, hence re-
sulting in the strength-length dependence exper-
imentally observed in a fibrous structure.

EXPERIMENTAL EVIDENCE AND ISSUES

The progresses summarized above are either de-
veloped owing to the inspiration from, or verified
by, the experimental results shown below.

The Fragmentation and the Critical Fiber Length

Introduced here is an early experimental work
that delivers informative and elaborate experi-
mental evidence obtained under the conditions
close to ideal, and hence reveals some fundamen-

tal confirmations supporting our discussions
above.

This work was done by Monego et al.,45,99,100

using mechanical tracer elements as a means of
studying rupture mechanisms in continuous-
twisted structures of blended-fiber types. To facil-
itate experimental control and observation, they
made a set of gross-model yarns in lieu of conven-
tional structures. The gross-model yarns each
consisted of 91 components, either cotton yarns or
polyester (termed PET or Dacron below) filament
yarns, drawn from independent packages in a
creel and twisted carefully with negligible radial
migration, in five helical layers about a central or
core yarn. A total of 91 different colors was used
for different samples of the cotton yarn to permit
identification of each cotton component with re-
spect to its radial position in the gross model. A
range of such model structures were prepared

Figure 3 (Continued from the previous page)
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which varied from 0 to 100% cotton (100 to 0%
polyester) with twist ranging from about 0.50 to
4.50 twist multiplier.

In this model yarn (or more accurately, a
strand consisting of individual yarns or compo-
nents), the polyester components are yarns of 70
denier, formed by 34 filaments, and the cotton
yarns are of 79’s cotton count or 67 denier. For
briefness, we will refer to this model strand as a
blended yarn, and its constituent yarns as com-
ponents.

Successive specimens of these model strands
were tested on an Instron tester to different
strain levels. After each specimen was strained to
its designated level, it was removed from the in-
strument, then carefully untwisted and examined
for the presence of tensile breaks in the compo-
nent yarns. A fairly simple approach was used to
record the location and frequency of component
breaks at each extension level for each gross
model. A series of parallel lines was drawn in
groups corresponding to half the number of com-
ponents in each ring of the model cross-section.
Each group was then arranged symmetrically
about the center line or axis of the model. The
lines were numbered arbitrarily from right to left
as shown in Figure 2. Thus, each numbered line
corresponds to a numbered position in the cross-
section of the model in Figure 2(d). The unmarked
locations represent polyester yarn positions for
the given specimen. A few testing results are pro-
vided herein as a basis for further discussion.

Figure 2 shows data taken in tests of a 2-cot-
ton/89-polyester component model with the cotton
located at positions no. 8 and no. 52, as shown in
Figure 2(d). The twist multiplier was 2.19. After
extension of the model yarn to the 11% strain
level, component no. 52, located in the second ring
from the core, evidenced five breaks in its

20.32-cm gauge length (this process of multiple
breaks is now widely termed as the fragmentation
process), whereas component no. 8 in the fifth or
outer ring showed no breaks, as seen in Figure
2(a). When another specimen of the same model
was extended to 15%, it evidenced 19 breaks in
no. 52 and fewer breaks in no. 8, as shown in
Figure 2(b). Figure 2(c), representing the effect of
25% extension, shows the presence of 44 breaks in
no. 52 and 13 in no. 8.

As mechanical tracers, components no. 52 and
no. 8 clearly illustrate the dependence of multiple
break frequency on location, hence on local strain
level and on local pressure. The whole structure
will fail when the length of the fragment reaches
the critical length and can no longer build up
load.

In contrast, an entirely different fracture be-
havior can be observed by using a 3.26 twist mul-
tiplier model of 40 cotton components. The initi-
ation of rupture of a few inner cotton components
is followed by rapid and concentrated propagation
of the break to most of the cotton yarns in that
region. At this point, the load shed so precipi-
tously by the cotton exceeds the additional load-
bearing capacity of the polyester and the entire
model fails in a manner characteristic of a 100%
cotton model. The remaining elongation of the
polyester is not realized, as is seen in Figure 3.
The concentration of the break propagation is
seen in Figure 3(a–c) for extension steps of 11, 12,
and 13%, respectively.

Finally, it is shown in Figure 4 that twist
strongly influences the load transfer and rupture
propagation and thus, by altering the intercom-
ponent interactions, significantly affects the level
of tensile strength (or the in situ component be-
havior), the reaching of (or failure to reach) the
full filament extension potential (the saturation
of the fragmentation process), the overall shape of
the yarn stress strain curve and its general slope
and, eventually, the work to tensile rupture. In
these tests from Figure 4, all models were the
same blend ratio, 56-cotton/44-polyester. The var-
ious twist levels ranging from 0.54 to 4.34 twist
multiplier lead to quite diverse fracture re-
sponses.

The significance of this work includes:

1. It clearly demonstrates the distributions of
the fiber strain and the lateral pressure in
a yarn

2. It stresses the importance of the intercom-
ponent interactions in a fibrous structure

Figure 4 Effects of twist level on fracture behavior of
yarn models (experimental99).
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3. It provides for the first time the experimen-
tal evidence of the fragmentation process
and the critical fiber length in a twisted
fibrous structure

4. It shows that the saturation of the frag-
mentation process is not always realized;
therefore, yarns at different situations will
break with different critical length, leading
to the gauge length effect in the yarns

5. It illustrates the existence of the difference
between the in situ and ex situ fiber behav-
iors.

6. Finally, these experiments verify the exis-
tence of the hybrid effect in a blended
structure. There are normally two peaks in
the stress–strain curve of a blended yarn;
the first one is associated with the cotton
component and the second one with the
PET component. By examining Figure 4,
we can see that the locations (breaking
strains) of the two peaks shift depending
on the twist level. In other words, in this
blended case, the two components behave
differently at different twist levels, and
from what they would in a nonblended
case.

The Hybrid Effects and the Fiber Property

There are further experimental verifications for
the hybrid effect. Kemp and Owen103 studied ex-
perimentally the strength and mechanical behav-
ior of nylon/cotton blended yarns, and they found
that there exists a dependence between the be-
havior of two fiber types: the cotton fibers in the
blended yarn break at strains considerably less
than the breaking strain in an all-cotton yarn.

Pan104 also performed a related experiment by
using two sets of yarns. The first set of yarn
samples were made of polyamide 66 (nylon-66)
and polypropylene filaments. By altering the
numbers of nylon-66 and polypropylene fila-
ments, the blend ratio of each yarn was adjusted.
The yarns were twisted to different degrees ac-
cording to the experiment design. The yarn sam-
ples were tested on an Instron tester.

The second set of data are from Monego99 used
before. It is thus possible to construct Figure
5(a,b) in terms of tenacity versus the blend vol-
ume fraction W1. For the first set of data, the
nylon-66 fiber was chosen as the reinforcing fiber
in which volume fraction is therefore designated
as W1. For the second set, the PET component is
the reinforcement. There are two results in each

Figure 5 The tenacity versus the blend ratio W1 and
the comparison between the prediction by the rule of
mixtures and the experiments: (a) for the first set of
yarns; (b) for the second set of yarns.
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figure, the line representing the prediction based
on the rule of mixtures (ROM) and the points of
the experimental results. So the difference be-
tween the results of ROM and the experiments
shows the existence of the hybrid effect, according
to the definition associated with ROM.

As seen in the figures, for the two sets of yarns
tested in this study, they have demonstrated dif-
ferent behaviors in terms of hybrid effects. For
the first group, the hybrid effects are much
smaller than those for the second group. To ex-
plain the differences, we can turn to a previous
publication.27 In that article, it was predicted that
increasing tensile modulus ratio Ef 1/Ef 2 of the
two fiber types in a blended yarn will lead to a
more significant hybrid effect. When we checked
the fiber data, we found that the ratio Ef 1/Ef 2
5 1.09 for the first set of yarn is lower than
Ef 1/Ef 2 5 2.71 for the second set. This accounts
for the difference in the hybrid effect between the
two groups of yarns.

Just recently, Pan et al.105 have published an
article that verifies more thoroughly the existence
of the hybrid effects and the involved variables for
hybrid fibrous twisted structures through a sys-
tematic experiment.

The Size Effect at Different Levels of Fibrous
Structures

Pan et al.102 have performed another experimen-
tal work to examine the size effect at different
levels of fibrous structures with a series of tensile
tests on single fibers, fiber bundles, and yarns.
Three types of filaments, polypropylene, polyes-
ter, and nylon-66 were selected for the project.
Details of the results can be found in Pan et al.102

Figure 6 shows the gauge length effect on the
relative strength for polypropylene, including sin-
gle fiber, fiber bundle, and twisted yarns. It is
clearly shown that fiber has the most significant
gauge length effect, the gauge length influence
reduces for bundle probably because of the fiber–
fiber interactions, and diminishes further for the
yarn because of the fragmentation process.

CONCLUSIONS

Part of the fibrous structure manufacturing in-
dustry associated with clothing applications has
been considered a “sunset” or a mature industry
at least in the developed countries. However, if we
look at the current state of textile science, we

have to admit that, despite the extensive progress
we have made, compared with other fields, textile
science is still in its adolescence, and very much
underdeveloped, due partly to the extreme com-
plexity of textile structure itself, and partly to the
almost negligence in the past by the scientific
community at large—no science discipline is able
to grow in isolation. There are many fundamental
issues and problems yet to be solved in order to
establish a knowledge system mature enough or
fully developed to support and guide the advance
of the industry.

Since the 1990s, we have witnessed an arous-
ing interest in research of textile or fibrous struc-
tures and expanding applications of the materi-
als. There are several reasons likely attributed to
this change. First, textile-reinforced composites
and other textile structures for load-carrying in-
dustrial applications provide some unique advan-
tages that are nonexistent in the traditional en-
gineering materials, and therefore attract atten-
tion from various engineering fields; second, with
the ending of the “Cold War,” defense-related re-
search expenditure has been severly reduced, and
part of the savings is shifting, as a peace divi-
dend, toward research for consumer products
such as textiles. Although no one knows for sure
whether this shifting indicates a long-term
change or just a transitional incident, it is cer-
tainly a welcome sign for the textile industry.

The authors thank Prof. Stanley Backer of MIT for
many inspiring and helpful discussions during the
preparation of the manuscript.
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